Aptamer AS411 interacts with the KRAS promoter/hnRNP A1 complex and shows increased potency against drug-resistant lung cancer†
Abstract
G-quadruplex (G4) aptamers that can competitively binding protein with oncogene promoter G4 hold promise for cancer treatment. In this study, a neutral cytidinyl lipid, DNCA, was shown to transfect and deliver G4 aptamers (AS1411, TBA) into tumour cells, including multidrug-resistant tumour cells, and their nuclear localizations were clearly detected. Both AS1411/DNCA and TBA/DNCA showed excellent antitumour efficacies in the drug-resistant non-small cell lung cancer cell line A549/TXL at a low concentration (100 nM). Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was identified as a new target of AS1411 and TBA. The binding affinities were measured, and the Kd values of AS1411/hnRNP A1 and TBA/hnRNP A1 were 17.5 nM and 21.1 nM, respectively. Then the expression of KRAS mRNA in A549/TXL cells was found to be higher than that in A549 cells, and KRAS mRNA was reduced by approximately 40% after administration of AS1411 or TBA in A549/TXL cells. Further, it was confirmed for the first time that AS1411 targeted not only hnRNP A1 but also the KRAS promoter/hnRNP A1 complexes. And although TBA cannot target the KRAS promoter/hnRNP A1 complexes, the biolayer interferometry (BLI) experiment showed that TBA and AS1411 have similar effects on several key proteins in tumour cells, especially hnRNP A1. Molecular docking and molecular dynamics simulation showed that AS1411 and the KRAS promoter bound to the same domain of hnRNP A1 protein, while TBA bound to another domain.