Issue 10, 2024

Design, synthesis, inhibitory activity, and molecular simulations study for d-glucose-conjugated thioureas containing pyrimidine ring as multitarget inhibitors against α-amylase, α-glucosidase, DDP-4, and PTP1B in Type 2 diabetes mellitus

Abstract

A series of tetra-O-acetyl-α-D-glucopyranosyl thioureas 8a–l of substituted 2-aminopyrimidines 4a–l have been designed and synthesized. The latter were prepared from corresponding chalcones 3a–l of p-bromoacetophenone and appropriate substituted benzaldehydes by their reaction with guanidine. The target thiourea compounds 8a–l exhibited significant inhibitory activity in vitro against enzymes that were related to type 2 diabetes mellitus, including α-amylase, α-glucosidase, DPP-4, and PTP1B. Amongst these thioureas, compound 8k with an ortho-methoxy group was the most potential enzyme inhibitor against α-amylase with an IC50 value of 9.72 ± 0.34 μM. Its meta-isomer 8j was the strongest inhibitor against α-glucosidase with IC50 = 9.73 ± 0.72 μM. In the inhibition against DPP-4, compound 8f with a para-bromo substituent exhibited the strongest activity with an IC50 value of 2.53 ± 0.03 nM. In the inhibition against PTP1B, compound 8h with a para-isopropyl substituent had the strongest inhibitory activity with an IC50 value of 2.74 ± 0.03 μM. The enzyme kinetics of the most active compounds, including 8j, 8f and 8h against α-glucosidase, DPP-4, and PTP1B, respectively, were studied. The obtained results showed that 8j was a competitive α-glucosidase inhibitor with an inhibitory constant KI value of 9.31 μM. Compound 8f was a non-competitive inhibitor for DDP-4 with an inhibitory constant KI value of 12.57 μM. Compound 8h was also a non-competitive inhibitor for DDP-4 with an inhibitory constant KI value of 12.41 μM. The cytotoxicity of the most active compounds, including 8f and 8k (against α-amylase), 8i and 8j (against α-glucosidase), 8a, 8f, and 8g (against DPP-4), and 8d, 8f, and 8h (against PTP1B) was screened. The obtained cytotoxicity showed that all tested inhibitors were noncytotoxic to human normal cell line 3T3. Induced fit docking simulations of all synthesized compounds 8a–l were performed on four enzymes 4W93 (for α-amylase), 3TOP (for α-glucosidase), 3W2T (for DPP-4), and 1NNY (for PTP1B). Key interactions of each of these ligands with residues in the active pocket of each studied enzyme have been shown.

Graphical abstract: Design, synthesis, inhibitory activity, and molecular simulations study for d-glucose-conjugated thioureas containing pyrimidine ring as multitarget inhibitors against α-amylase, α-glucosidase, DDP-4, and PTP1B in Type 2 diabetes mellitus

Supplementary files

Article information

Article type
Research Article
Submitted
09 May 2024
Accepted
24 Jun 2024
First published
28 Jun 2024

RSC Med. Chem., 2024,15, 3395-3417

Design, synthesis, inhibitory activity, and molecular simulations study for D-glucose-conjugated thioureas containing pyrimidine ring as multitarget inhibitors against α-amylase, α-glucosidase, DDP-4, and PTP1B in Type 2 diabetes mellitus

V. Ngoc Toan, D. Son Hai, H. Thi Kim Van, N. Minh Tri, D. Ngoc Toan, N. Thi Thanh Mai and N. Dinh Thanh, RSC Med. Chem., 2024, 15, 3395 DOI: 10.1039/D4MD00334A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements