Issue 11, 2024

Prediction of superconductivity in a series of tetragonal transition metal dichalcogenides

Abstract

Transition metal dichalcogenides (TMDCs) represent a well-known material family with diverse structural phases and rich electronic properties; they are thus an ideal platform for studying the emergence and exotic phenomenon of superconductivity (SC). Herein, we propose the existence of tetragonal TMDCs with a distorted Lieb (dLieb) lattice structure and the stabilized transition metal disulfides (MS2), including dLieb-ZrS2, dLieb-NbS2, dLieb-MnS2, dLieb-FeS2, dLieb-ReS2, and dLieb-OsS2. Except for semiconducting dLieb-ZrS2 and magnetic dLieb-MnS2, the rest of metallic dLieb-MS2 was found to exhibit intrinsic SC with the transition temperature (TC) ranging from ∼5.4 to ∼13.0 K. The TC of dLieb-ReS2 and dLieb-OsS2 exceeded 10 K and was higher than that of the intrinsic SC in the known metallic TMDCs, which is attributed to the significant phonon-softening enhanced electron–phonon coupling strength. Different from the Ising spin–orbit coupling (SOC) effect in existing non-centrosymmetric TMDCs, the non-magnetic dLieb-MS2 monolayers exhibit the Dresselhaus SOC effect, which is featured by in-plane spin orientations and will give rise to the topological SC under proper conditions. In addition to enriching the structural phases of TMDCs, our work predicts a series of SC candidates with high intrinsic TC and topological non-triviality used for fault-tolerant quantum computation.

Graphical abstract: Prediction of superconductivity in a series of tetragonal transition metal dichalcogenides

Supplementary files

Article information

Article type
Communication
Submitted
07 Feb 2024
Accepted
04 Mar 2024
First published
05 Mar 2024

Mater. Horiz., 2024,11, 2694-2700

Prediction of superconductivity in a series of tetragonal transition metal dichalcogenides

J. Liu, H. Wang, X. Shi and X. Zhang, Mater. Horiz., 2024, 11, 2694 DOI: 10.1039/D4MH00141A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements