Issue 13, 2024

Aggregation-induced emission organic metal halide complex for X-ray scintillation

Abstract

The expanding applications of X-ray scintillation across various areas, from healthcare to security detection call for the development of new-generation scintillators that offer enhanced sensitivity, efficiency, and versatility. Here, we report for the first time the use of organic metal halide complexes with aggregation-induced emission (AIE) for X-ray scintillation, which can be facilely synthesized and processed in the solution phase. By reacting an AIE organic molecule, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyridinium (TPA-PD) with zinc chloride (ZnCl2) in solution at room temperature, an organic metal halide complex, (TPA-PD)2ZnCl2, is produced with a high synthetic yield of 87%. Optical and radioluminescence characterizations find that (TPA-PD)2ZnCl2 exhibits bluish-green photoluminescence and radioluminescence peaked at around 450 nm, with a photoluminescence quantum efficiency (PLQE) of 65%, and an absolute light yield of 13 423 Photon per MeV. Moreover, short photoluminescence and radioluminescence decay lifetimes are recorded at 1.81 ns and 5.24 ns, respectively. For X-ray scintillation, an excellent response dose–response linearity and a low limit of detection of 80.23 nGyair S−1 are obtained for (TPA-PD)2ZnCl2. By taking advantage of the high X-ray absorption of metal halides and fast radioluminescence of AIE molecules, our design of covalently bonded organic metal halide complexes opens up new opportunities for the development of high-performance solution-processable scintillators.

Graphical abstract: Aggregation-induced emission organic metal halide complex for X-ray scintillation

Supplementary files

Article information

Article type
Communication
Submitted
07 Feb 2024
Accepted
11 Apr 2024
First published
11 Apr 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2024,11, 3076-3081

Aggregation-induced emission organic metal halide complex for X-ray scintillation

T. B. Shonde, H. Liu, O. J. Olasupo, A. Bouchard, S. Bouchard, A. Franklin, X. Lin, L. M. Stand and B. Ma, Mater. Horiz., 2024, 11, 3076 DOI: 10.1039/D4MH00142G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements