Versatile Pickering emulsion gel lubricants stabilized by cooperative interfacial graphene oxide-polymer assemblies†
Abstract
Although a large number of water- and oil-based gel lubricants have found extensive potential applications in industrial and biomedical fields, developing new-type emulsion-based gel lubricants that may effectively integrate their characteristics and preponderances remains a significant challenge. Here a water-in-oil Pickering emulsion gel lubricant that is able to combine the high colloidal stability of traditional Pickering emulsions, the good swelling and corrosion resistance of oil-based gel lubricants, and the high cooling capacity of water-based gel lubricants prepared from a binary mixture of aqueous graphene oxide (GO) dispersion and diamino-functionalized polydimethylsiloxane oil solution in a broad concentration, pH, and water volume fraction range is reported. It can provide favourable lubrication for the Si3N4/steel and Si3N4/silicone tribopairs either in air or under water owing to the formation of a sturdy adsorbed oil film and ball-bearing actions of the GO particles. It can also be printed into various colourful 2D and 3D geometries upon direct extrusion into water, thanks to its water-in-oil nature and inherent shear-thinning and thixotropic properties, which further shows good prospects in underwater operations and artificial biomimetic organs. Our study may provide new insights into the design and preparation of novel semi-solid materials for diverse industrial, engineering, and biomedical applications.