Photo-controllable microcleaner: photo-induced crawling motion and particle transport of azobenzene crystals on a liquid-like surface†
Abstract
Organic crystals of 3,3′-dimethylazobenzene (DMAB) exhibit photo-induced crawling motion on solid surfaces when they are simultaneously irradiated with ultraviolet and visible light from opposite directions. DMAB crystals are candidates for light-driven cargo transporters, having simple chemical compositions and material structures. However, fast crawling motion without significant shape deformation has not yet been achieved. In this study, compared with hydrophilic glass and conventional hydrophobic surfaces with alkyl chains, siloxane-based hybrid surfaces, which are “liquid-like surfaces,” result in the fastest crawling motion (4.2 μm min−1) while the droplet-like shape of DMAB crystals is maintained. Additionally, we successfully demonstrate that the DMAB crystals are capable of capturing and carrying silica particles on the hybrid surface. The transport direction is changed on demand without releasing the particles by simply changing the irradiation direction. The particles can be left on the substrate by removing the DMAB crystals via sublimation at room temperature. This result showcases a new concept of “photo-controllable microcleaner” that can operate a series of cargo capture–carry–release tasks. We expect this transporter to contribute to the development of crystal actuators, microfluidics, and microscale molecular flasks/reactors.