Issue 24, 2024

Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors

Abstract

Mechanical metamaterials with integrated functionalities can simultaneously fulfill multiple design requirements through design consolidation, which is highly desirable for weight-sensitive and space-constrained applications. Despite the extensive research on multistable metamaterials, their integration with other functionalities, such as vibration isolation, sensing, and hierarchical energy absorption, remains largely untapped. Here, we report a novel class of mechanical metamaterial featuring programmable multistability and function-oriented multitransition behaviors. This integration is realized through a novel assembly-based design concept that incorporates interchangeable contact block (CB) units into a classical bistable structure. By varying the position, number, and shape of CB units, we can obtain a spectrum of function-oriented transition behaviors, offering reconfigurability through unit replacement. To ensure the rational design of CB, we employ a comprehensive approach that combines theoretical analysis, numerical simulations, and experimental validation to investigate the nonlinear behaviors of these assembled metamaterials, including snap-through instability and contact behaviors. Additionally, we explore design strategies such as 2D arraying and 3D extension to achieve programmable multistability. Furthermore, we demonstrate the versatility of these assembled mechanical metamaterials by constructing digital materials with scalability, reconfigurability, and multidirectionality. The proposed assembly-based design concept breaks new ground in engineering multistable structures with integrated functionalities for deployable structures, robotics, and beyond.

Graphical abstract: Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors

Supplementary files

Article information

Article type
Communication
Submitted
13 Jul 2024
Accepted
19 Aug 2024
First published
20 Aug 2024

Mater. Horiz., 2024,11, 6371-6380

Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors

J. He, Y. Wang, Z. Shen, L. Xia and Y. Xiong, Mater. Horiz., 2024, 11, 6371 DOI: 10.1039/D4MH00906A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements