Epitaxial strain manipulation of the cluster glass state in LaMnO3 films
Abstract
As a new-type magnetic state, the cluster glass state in manganite is arousing considerable attention due to its important theoretical value and extensive application prospects in condensed matter physics and spintronics. Due to the complex magnetic interactions, the cluster glass state is difficult to form and regulate in single films. Studies report a new phenomenon that epitaxial strain can regulate the formation of the cluster glass state in LaMnO3 (LMO) films. Comparing LMO thin films with different thicknesses grown on a (001)-oriented LaAlO3 (LAO) single crystal substrate, we found that the 20-nm-thick LMO film is more likely to form the cluster glass state than the 60-nm-thick and 120-nm-thick films. This can be attributed to the uneven distribution of strain and Mn ions in the depth profile. Our work demonstrates that thickness is an important method for regulating the formation of the cluster glass state in LMO films.