Unraveling the composition of each atomic layer in the MXene/MAX phase structure – identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes†
Abstract
MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.