Exploring the magnetic, electric and magnetodielectric properties of (1 − x)Ba0.9Ni0.1Ti0.9Mn0.1O3–xCo0.9Mn0.1Fe1.9V0.1O4 multiferroic composites
Abstract
In this study, 0–3 particulate multiferroic composites were synthesized using the solid-state reaction method. The composites consist of Ba0.9Ni0.1Ti0.9Mn0.1O3 (BT) and Co0.9Mn0.1Fe1.9V0.1O4 (CF) in the form of (1 − x)BT–xCF (x = 0.00, 0.1, 0.2, 0.4, and 0.6). X-ray diffraction and Rietveld refinement analysis confirmed the tetragonal and cubic phases of both BT and CF, with space groups P4mm and Fdm, respectively. Field Emission Scanning Electron Microscopy (FESEM) and Energy dispersive X-ray analysis (EDS) techniques were used to confirm grain enlargement and elemental composition. Diffuse reflectance spectroscopy (DRS) revealed a correlation between Urbach energy and the band gap, suggesting the presence of supplementary defect levels near the conduction and valence band edges. Dielectric investigations showed three separate ferroelectric transitions in both BT and its composites, with diffusive characteristics evaluated using a modified variant of the Curie–Weiss Law. The ferromagnetic nature of CF and the composite materials was confirmed by observing their well-saturated (M–H) hysteresis behaviour, and the magneto-crystalline anisotropy constant (K) was determined using the law of approach to saturation (LAS). Polarization–electric field (PE) loops showed non-linear elliptical patterns under different electric field strengths, providing convincing proof of the ferroelectric properties of all samples under study. In the piezoelectric study, the ceramic composition of BT–CF (0.6) has been found to demonstrate the highest peak-to-peak strain value, which holds promise for applications that necessitate electric-field-induced strain. The composite material demonstrated exceptional resilience in maintaining strong bulk biquadratic magnetoelectric coupling, and the enhanced coupling coefficients of particulate composites doped with nickel, vanadium, and manganese even under room temperature conditions make them favorable for magnetoelectric devices, with significant implications for the development of advanced multifunctional devices in various industries, including renewable energy and electronics.