Issue 45, 2024

Study of a small molecule gel fracturing fluid and its in situ conversion into an efficient oil displacement agent

Abstract

Viscoelastic surfactants (VESs) are critical components of water-based fracturing fluids. However, the challenges related to the large volumes and complex disposal of flowback fluids from conventional VES fracturing fluids remain unresolved. Accordingly, a multifunctional small molecule surfactant gel was successfully prepared in this study. This system exhibits the capacity of in situ gel-breaking and converting it into an oil displacement agent, thus achieving the goal of no fluid return. The gel was composed of erucic acid amidopropyl betaine (EAPB), oleic acid amidopropyl betaine (OAPB), and a thickening agent, and the system was referred to as EOO. On the basis of this gel system, a series of performance parameters have been evaluated through extensive experiments. The research results demonstrated that this gel exhibits good stability, viscoelasticity, sand-carrying capacity, and remarkable self-repairing ability at high shear rates. Additionally, the gel achieves ultra-low interfacial tension and wetting reversal characteristics, both of which are conducive to enhanced oil recovery. Oil displacement and profile control of the gel were evaluated using single and parallel core flooding experiments. The results indicated that the EOO gel increased injection pressure in high-permeability cores and mobilized residual oil in low-permeability cores, thereby expanding the swept volume and enhancing recovery. The small molecule gel developed in this study which can be converted in situ into an oil displacement agent is a candidate for enhanced oil recovery in low-permeability oil fields.

Graphical abstract: Study of a small molecule gel fracturing fluid and its in situ conversion into an efficient oil displacement agent

Article information

Article type
Paper
Submitted
05 Sep 2024
Accepted
22 Oct 2024
First published
25 Oct 2024

New J. Chem., 2024,48, 19296-19307

Study of a small molecule gel fracturing fluid and its in situ conversion into an efficient oil displacement agent

J. Yang, B. Liu, T. Wu, P. Zhou, Q. Liu, Y. Tang, H. Huang and G. Chen, New J. Chem., 2024, 48, 19296 DOI: 10.1039/D4NJ03918A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements