Halide exchange mediated cation exchange facilitates room temperature co-doping of d-and f-block elements in cesium lead halide perovskite nanoparticles†
Abstract
This study presents a halide exchange mediated cation exchange reaction to co-dope d- and f-block elements in CsPbX3 NPs at room temperature. Addition of MnCl2 and YbCl3 to CsPbBr3 NPs induces ion exchange reactions generating the corresponding CsPbBr3/MnCl2YbCl3 NPs. In addition to the perovskite emission, the NPs display sensitized Mn2+ and Yb3+ emissions in concert spanning the UV, visible, and NIR spectral region. Structural and spectroscopic characterizations indicate a substitutional displacement of Pb2+ by the Mn2+ and Yb3+. The identity of the host halide in modulating the ion exchange reactions was also tested. An effective perovskite host NP is presented that can be used to incorporate d–f or f–f dopant combinations to realize a gamut of dopant emission lines. A charge trapping based photophysical model is developed that focuses on rational energy alignments to predict dopant emissions semi-empirically and aids the design of optimal perovskite host−multi-dopant combinations.