Nanostructured cobalt/copper catalysts for efficient electrochemical carbon dioxide reduction†
Abstract
The search for an efficient and stable catalyst for the electrochemical reduction of CO2 to value-added chemicals is especially critical for lowering the atmospheric CO2 concentration. In this study, self-supported cobalt/copper nanostructured catalysts were designed, where the influences of the elemental composition and acid-etching on their efficiency towards the CO2 reduction reaction were studied. The developed Co/Cu catalysts showed superb catalytic activity with a low onset potential at −0.2 V vs. RHE. Gas and liquid product analysis revealed that formate and CO were the main products. It was observed that lower reductive potentials were favourable for formate production, while higher reductive potentials were more favourable for CO formation. In situ electrochemical FTIR studies were further conducted to gain insight into the CO2 reduction mechanism. The novel synthetic procedure reported in this study leads to promising electrocatalysts with high efficiencies for the conversion of CO2 into valuable products.
- This article is part of the themed collection: Nanocatalysis