Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments
Abstract
Two-dimensional MXenes were discovered in 2011 and, because of their outstanding properties, have attracted significant attention as electrode materials for supercapacitors, rechargeable batteries, and hybrid energy storage devices. Numerous studies were dedicated to identifying feasible charge storage mechanisms in MXenes and investigating the effects of structural and superficial properties on the corresponding mechanisms. The results clarify that interlayer distance and surface termination groups in MXenes significantly determine the deliverable energy and power density in respective energy storage devices. Additionally, due to van der Waals interactions, adjacent MXene sheets tend to aggregate and restack during electrode preparation or charge and discharge cycling, reducing the MXene interlayer distance and deteriorating its energy storage ability. In this review, we first summarize the different charge storage mechanisms applicable to MXenes in different energy storage devices and describe the effect of interlayer spacing and surface termination groups. Then, different interlayer space engineering methods are reviewed in terms of materials and procedures, and their impact on the electrochemical behavior and restacking tendency of MXene is described.
- This article is part of the themed collection: Recent Review Articles