Synthetic DNA nanopores for direct molecular transmission between lipid vesicles†
Abstract
Lipid vesicles hold potential as artificial cells in bottom-up synthetic biology, and as tools in drug delivery and biosensing. Transmitting molecular signals is a key function for vesicle-based systems. One strategy to achieve this function is by releasing molecular signals from vesicles through nanopores. Nevertheless, in this strategy, an excess of molecular signals may be required to reach the targets, due to the dispersion of the signals during diffusion. The key to achieving the efficient utilization of signals is to shorten the distance between the sender vesicle and the target. Here, we present a pair of DNA nanopores that can connect and form a direct molecular pathway between vesicles. The nanopores are self-assembled from nine single DNA strands, including six 14-nucleotide single-stranded overhangs as sticky-end segments, enabling them to bind with each other. Incorporating nanopores shortens the distance between different populations of vesicles, allowing less diffusion of molecules into bulk solution. To further reduce the loss of molecules, a DNA nanocap is added to one of the nanopore's openings. The nanocap can be removed through the toehold-mediated DNA strand displacement when the nanopore meets its counterpart. Our DNA nanopores provide a novel molecular transmission tool to lipid vesicles-based systems.