Issue 36, 2024

Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bis-imidazolium frameworks for CO2 conversion

Abstract

A series of hard-template-derived hollow mesoporous organosilica nanoparticles (HMONs) with pyridine-2,6-bis-imidazolium frameworks have been described for the first time. As a part of the investigation, to evaluate the effects of the hard template nature, the Si/CTAB and organosilica/TEOS molar ratios, and the stepwise addition of precursors, four reaction conditions denoted as methods A–D were designed. In the presence of polystyrene latex as a hard template, the HMONs that we wished to synthesize were not yielded with a Si/CTAB molar ratio of 3 (method A), but we could synthesize the desired HMONs with a Si/CTAB molar ratio of 9 and an organosilica : TEOS ratio of 1 : 99 (method B). The ratio of organosilica to TEOS could be improved up to 2.5 : 97.5 if the precursor additions are made in a stepwise manner rather than by simultaneous additions (method C). Using sSiO2 as a hard template, a yolk–shell morphology was observed by adopting a Si/CTAB molar ratio of 3 (method D). The HMONs were modified by iodide ions and their activity was explored toward the coupling of CO2 with epoxides. Among the catalysts, I-HMON-L-C-2.5 exhibited excellent results under mild reaction conditions. Well-oriented pore sizes and short channel length facilitated easy mass transfer from one side and the integration of the interior hollow regions of the catalyst particles from the other side improved the CO2 retention time around pores where the imidazolium organocatalysts were located, which made I-HMON-L-C-2.5 an effective catalyst for title CO2 utilization. The catalyst was reused at least six times without exhibiting any changes in its activity. HMONs can also be used as solid CNC ligands for the preparation of copper catalysts for the click reaction between phenyl acetylene and benzyl azide.

Graphical abstract: Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bis-imidazolium frameworks for CO2 conversion

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2024
Accepted
10 Jul 2024
First published
11 Jul 2024

Nanoscale, 2024,16, 16977-16989

Controllable synthesis of hollow mesoporous organosilica nanoparticles with pyridine-2,6-bis-imidazolium frameworks for CO2 conversion

G. Anvarian-Asl, S. Joudian, S. Todisco, P. Mastrorilli and M. Khorasani, Nanoscale, 2024, 16, 16977 DOI: 10.1039/D4NR02144D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements