Synergetic antibacterial nanosheet based on Ti3C2Tx photothermal therapy and cationic polymer to eradicate drug-resistant bacterial biofilms†
Abstract
Drug-resistant bacteria infection and biofilm formation on the wound still pose a tremendous challenge in post-antibiotic era. It has been proposed that multimode synergetic antibacterial strategies may be employed to eradicate drug-resistant bacteria and biofilms effectively. In this study, we synthesized non-invasive antibacterial two-dimension (2D) composite nanosheet BPG using Ti3C2Tx MXene and cationic borneol-guanidine based polymers (B-PGMA-Gu) via simple electrostatically co-assemble. BPG can target bacteria and efficiently eliminate Gram-positive bacteria Staphylococcus aureus (S. aureus), Gram-negative bacteria Escherichia coli (E. coli), and methicillin-resistant Staphylococcus aureus (MRSA) under 808 nm radiation. By combining the photothermal properties of Ti3C2Tx MXene and the excellent membrane penetration ability of B-PGMA-Gu, MRSA biofilms can be effectively removed at 100 μg mL−1 under laser irradiation, resulting in a bactericidal efficiency of 99.1%. This method offers a more effective and rapid non-antibiotic method for removing biofilms.