Application of the intramolecular Diels–Alder vinylarene (IMDAV) reaction for the synthesis of benzo-, carbocyclo-, thienothiopheneisoindolecarboxylic acids and its limitations†
Abstract
Thienylallylamines, readily accessible from the corresponding thienyl aldehydes, react with maleic and trifluoromethylmaleic anhydrides leading to the formation of acids with a thieno[2,3-f]isoindole core. The reaction sequence involves two successive steps: acylation of the nitrogen atom of the initial allylamine and the intramolecular Diels–Alder vinylarene (IMDAV) reaction. The scope and limitations of the proposed method were thoroughly investigated. It has been revealed with the aid of X-ray analysis and DFT calculations that the key step, the IMDAV reaction, proceeds through an exo-transition state, giving rise to the exclusive formation of a single diastereomer of the target heterocycle. The obtained functionally substituted thieno[2,3-f]isoindole carboxylic acids are potentially useful substrates for further transformations and bioscreening. The antimicrobial evaluation of the obtained compounds revealed that 1-oxo-2-(3-(trifluoromethyl)phenyl)hexahydrobenzo[4,5]thieno[2,3-f]isoindole-10-carboxylic acid is the most active sample in the synthesized library. It exhibits antibacterial activity against sensitive strains of Gram-positive bacteria, including S. aureus, Enterococcus faecium, Bacillus cereus, and Micrococcus luteus, as well as the Gram-negative bacteria E. coli and Pseudomonas fluorescens, with MIC values ranging from 4 to 64 μg mL−1. 9-Oxo-8-phenyloctahydronaphtho[2,1-d]thieno[2,3-f]isoindole-10-carboxylic acid showed antifungal activity against yeast culture C. albicans with a MIC value of 32 μM.