Mutasynthesis generates nine new pyrroindomycins†
Abstract
Pyrroindomycins (PYRs) represent the only spirotetramate natural products discovered in nature, and possess potent activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Their unique structure and impressive biological activities make them attractive targets for synthesis and biosynthesis; however, the discovery and generation of new PYRs remains challenging. To date, only the initial components A and B have been reported. Herein, we report a mutasynthesis approach for the generation of nine new PYRs with varying acyl modifications on their deoxy-trisaccharide moieties. This was achieved by blocking the formation of the acyl group 1,8-dihydropyrrolo[2,3-b]indole (DHPI) via gene pyrK1 inactivation and supplying chemical acyl precursors. The gene pyrK1 encodes a DUF1864 family protein that probably catalyzes the oxidative transformation of L-tryptophan to DHPI, and its deletion results in the abolishment of DHPI-containing PYRs and the accumulation of three new PYRs either without acyl modification or with DHPI replaced by benzoic acid and pyrrole-2-carboxylic acid. Capitalizing on the capacity of the ΔpyrK1 mutant to produce new PYRs, we have successfully developed a mutasynthesis strategy for the generation of six novel PYR analogs with various aromatic acid modifications on their deoxy-trisaccharide moieties, showcasing the potential for generating structurally diverse PYRs. Overall, this research contributes significantly to understanding the biosynthesis of PYRs and offers valuable perspectives on their structural diversity.