Issue 23, 2024

Brønsted acid-catalyzed regioselective ring opening of 2H-azirines by 2-mercaptopyridines and related heterocycles; one pot access to imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazoles

Abstract

A catalytic and versatile synthetic method for the synthesis of imidazo[1,2-a]pyridines has been developed. Brønsted acid-catalysis plays a major role in the regioselective ring opening of 2H-azirines. Nucleophilic attack via the N-centre of mercaptopyridines and their analogues, followed by cyclisation by cleaving the C–S bond, allowed a library of imidazo[1,2-a]pyridines and related heterocycles to be built. The reaction protocol has been applied to various 2H-azirines, 2-mercaptopyridines, and thiazole-2-thiols, illustrating the generality of reaction conditions. The practical applications include the synthesis of pharmaceuticals, such as anti-tumor agents. This study introduces a novel approach to the synthesis of functional molecules with extensive potential.

Graphical abstract: Brønsted acid-catalyzed regioselective ring opening of 2H-azirines by 2-mercaptopyridines and related heterocycles; one pot access to imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazoles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Mar 2024
Accepted
08 May 2024
First published
08 May 2024

Org. Biomol. Chem., 2024,22, 4697-4703

Brønsted acid-catalyzed regioselective ring opening of 2H-azirines by 2-mercaptopyridines and related heterocycles; one pot access to imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazoles

S. Biswas, A. Roy, S. Duari, S. Maity, A. M. Elsharif and S. Biswas, Org. Biomol. Chem., 2024, 22, 4697 DOI: 10.1039/D4OB00410H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements