Access to cyclohexadiene and benzofuran derivatives via catalytic arene cyclopropanation of α-cyanodiazocarbonyl compounds†
Abstract
The arene cyclopropanation between diazo compounds and benzene is well known to produce a tautomeric mixture of norcaradiene and cycloheptatriene in favour of the latter species. Nevertheless, previous studies have suggested that the initially formed norcaradiene can be stabilized by a C-7 cyano group with prevention of its 6π-electrocyclic ring opening. According to this feature, a synthetic route to functionalized cyclohexadienes has been designed using α-cyanodiazoacetates and α-diazo-β-ketonitriles as the starting materials, respectively. The Rh2(esp)2-catalyzed arene cyclopropanation of α-cyanodiazoacetates in benzene afforded the expected 7-alkoxycarbonyl-7-cyanonorcaradienes as isolable compounds, which then served as templates for the second cyclopropanation with ethyl diazoacetate or α-cyanodiazocarbonyls to enable the formation of bis(cyclopropanated) adducts. Their subsequent treatment with SmI2 triggered a double ring-opening process, allowing for the generation of 1,4- and/or 1,3-cyclohexadienes as either regio- or diastereomeric mixtures. On the other hand, the norcaradienes generated from phenyl- or methyl-substituted α-diazo-β-ketonitriles were found to undergo an in situ rearrangement to yield dihydrobenzofurans that could be converted to benzofuran derivatives by DDQ oxidation.