Sustainable biocatalytic synthesis of substituted muconic acids†
Abstract
The development of sustainable routes to organic building blocks is a critical endeavor for reducing the environmental impact of chemical synthesis. Biocatalysts are poised to play an important role in sustainable synthesis, as they perform highly selective reactions under mild conditions. The application of enzymes to organic synthesis requires an approach which is operationally simple, inexpensive to prepare, and reasonably scalable. In this work, we demonstrated the utility of a Type I ring-cleaving dioxygenase CatA (P. putida KT2440) for preparative-scale synthesis of muconic acid derivatives. Muconic acids are important precursors in the synthesis of polymers and commodity chemicals. In this work, we optimized the performance of CatA under millimolar substrate concentrations and characterized the activity of the enzyme with an array of catechol substrates. Furthermore, we developed a scalable platform using cellular lysates to produce diverse muconic acids, generating up to a gram of the desired product. A simple trituration procedure was utilized for the purification of these muconic acids that obviated the need for chromatographic purification and reduced overall solvent waste.