Issue 41, 2024

Unveiling the reactivity of 2H-(thio)pyran-2-(thi)ones in cycloaddition reactions with strained alkynes through density functional theory studies

Abstract

Over the past two decades, click chemistry transformations have revolutionized chemical and biological sciences. Among the different strain-promoted cycloadditions, the inverse electron demand Diels–Alder reaction (IEDDA) has been established as a benchmark reaction. We have theoretically investigated the IEDDA reaction of endo-bicyclo[6.1.0]nonyne (endo-BCN) with 2H-pyran-2-one, 2H-thiopyran-2-one, 2H-pyran-2-thione and 2H-thiopyran-2-thione. These 2H-(thio)pyran-2-(thi)ones have displayed different reactivity towards endo-BCN. Density functional theory (DFT) calculations show, in agreement with experiments, that endo-BCN reacts significantly faster with 2H-thiopyran-2-one compared to other 2H-(thio)pyran-2-(thi)one derivatives because of the lower distortion energy. Experimentally determined second-order rate constants for the reaction of a 2H-pyran-2-thione with different strained derivatives, including a 1-methylcyclopropene derivative and several cycloalkynes (exo-BCN, (1R,8S)-bicyclo[6.1.0]non-4-yne-9,9-diyl)dimethanol, dibenzocycylooctyne and a light activatable silacycloheptyne, were used to validate the computational investigations and shed light on this reaction.

Graphical abstract: Unveiling the reactivity of 2H-(thio)pyran-2-(thi)ones in cycloaddition reactions with strained alkynes through density functional theory studies

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
16 Sep 2024
First published
18 Sep 2024

Org. Biomol. Chem., 2024,22, 8285-8292

Unveiling the reactivity of 2H-(thio)pyran-2-(thi)ones in cycloaddition reactions with strained alkynes through density functional theory studies

W. Huang, K. Wen, S. T. Laughlin and J. Escorihuela, Org. Biomol. Chem., 2024, 22, 8285 DOI: 10.1039/D4OB01263A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements