Regioselective tungsten-catalyzed decarboxylative amination of allylic alcohols with isocyanates†
Abstract
Highly regioselective tungsten (W)-catalyzed decarboxylative allylic amination of allylic carbamates has been developed. Allylic carbamates can be generated in situ from readily available allylic alcohols and commercially available isocyanates. In the presence of a tungsten catalyst, branched allylic amines could be obtained in moderate to good yields with excellent regioselectivities (b/l > 20 : 1), and CO2 is the only byproduct. This reaction features mild conditions and a broad substrate scope, and aryl- and aliphatic-substituted allylic alcohols and isocyanates are suitable substrates.