Issue 1, 2024, Issue in Progress

Solution-processed Sb2Se3 photocathodes under Se-rich conditions and their photoelectrochemical properties

Abstract

In this study, selenium (Se)-rich antimony selenide (Sb2Se3) films were fabricated by applying a solution process with the solvents ethylenediamine and 2-mercaptoethanol to optimize the photoelectrochemical (PEC) performance of the Sb2Se3 photocathode. Various antimony (Sb)–Se precursor solutions with different molar ratios of Sb and Se (Sb : Se = 1 : 1.5, 1 : 3, 1 : 4.5, 1 : 7.5, and 1 : 9) were prepared to attain Se-rich fabrication conditions. As a result, the Se-rich Sb2Se3 films fabricated using the Sb–Se precursor solution with a molar ratio of Sb : Se = 1 : 7.5 exhibited an improved PEC performance, compared to the stoichiometric Sb2Se3 film. The charge transport was improved by the abundant Se element and thin selenium oxide (Se2O3) layer in the Se-rich Sb2Se3 film, resulting in a decrease in Se vacancies and substitutional defects. Moreover, the light utilization in the long wavelength region above 800 nm was enhanced by the light-trapping effect because of the nanowire structure in the Se-rich Sb2Se3 film. Hence, the optimal Se-rich Sb2Se3 photocathodes showed an improved photocurrent density of −0.24 mA cm−2 at the hydrogen evolution reaction potential that was three times higher than that of the stoichiometric Sb2Se3 photocathodes (−0.08 mA cm−2).

Graphical abstract: Solution-processed Sb2Se3 photocathodes under Se-rich conditions and their photoelectrochemical properties

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Oct 2023
Accepted
12 Dec 2023
First published
03 Jan 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 59-66

Solution-processed Sb2Se3 photocathodes under Se-rich conditions and their photoelectrochemical properties

H. J. Jin, C. Seong, G. W. Choi, J. Seo and M. Son, RSC Adv., 2024, 14, 59 DOI: 10.1039/D3RA07023A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements