Issue 1, 2024

Fe3O4@WO3-E-SMTU-NiII: as an environmentally-friendly, recoverable, durable and noble-free nanostructured catalyst for C–C bond formation reaction in green media

Abstract

In the present study, NiII immobilized on Fe3O4@WO3 functionalized by aminated epichlorohydrin using S-methylisothiourea (Fe3O4@WO3-E-SMTU-NiII) as a novel magnetically separable nanostructured catalyst was successfully synthesized and characterized using FT-IR, XRD, TEM, FE-SEM, EDX, EDX mapping, VSM, TGA, H2-TPR, ICP-OES and CHNS techniques. Characterization results revealed the spherical morphology and superparamagnetic behaviour of the as-synthesized catalyst with mean diameters of 19–31 nm as well as uniform distributions of the desired elements (Fe, O, W, C, N, S and Ni). The antibacterial activity of Fe3O4@WO3-E-SMTU-NiII was evaluated against a set of Gram positive and Gram negative bacteria, and the catalyst showed considerable activity against the Staphylococcus aureus strain. The aforementioned nanostructured catalyst exhibited perfect catalytic efficiency in the Heck–Mizoroki and Suzuki–Miyaura reactions under mild conditions without using toxic solvents (EtOH as a green solvent and WEB as a benign base). Desired coupled products were obtained from the reaction of different Ar–X (X = I, Br, Cl) with alkyl acrylates and arylboronic acids. A high nickel content with negligible metal leaching during the course of reactions led to the high catalytic performance and stability of Fe3O4@WO3-E-SMTU-NiII under optimized reaction conditions. The magnetically separation and ease of recovery and reusability of up to six cycles without a discernible decrease in catalytic activity or metal leaching are the most important features of the catalytic system from both industrial and environmental viewpoints.

Graphical abstract: Fe3O4@WO3-E-SMTU-NiII: as an environmentally-friendly, recoverable, durable and noble-free nanostructured catalyst for C–C bond formation reaction in green media

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2023
Accepted
02 Dec 2023
First published
02 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 492-516

Fe3O4@WO3-E-SMTU-NiII: as an environmentally-friendly, recoverable, durable and noble-free nanostructured catalyst for C–C bond formation reaction in green media

M. Nayamadi Mahmoodabadi, B. Akhlaghinia, S. Ein Afshar and M. Safarzadeh, RSC Adv., 2024, 14, 492 DOI: 10.1039/D3RA07151K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements