A comprehensive review on the advancements and challenges in perovskite solar cell technology
Abstract
Perovskite solar cells (PSCs) have emerged as revolutionary technology in the field of photovoltaics, offering a promising avenue for efficient and cost-effective solar energy conversion. This review provides a comprehensive overview of the progress and developments in PSCs, beginning with an introduction to their fundamental properties and significance. Herein, we discuss the various types of PSCs, including lead-based, tin-based, mixed Sn–Pb, germanium-based, and polymer-based PSCs, highlighting their unique attributes and performance metrics. Special emphasis is given to halide double PSCs and their potential in enhancing the stability of PSCs. Charge transport layers and their significance in influencing the overall efficiency of solar cells are discussed in detail. The review also explores the role of tandem solar cells as a solution to overcome the limitations of single-junction solar cells, offering an integrated approach to harness a broader spectrum of sunlight. This review concludes with challenges associated with PSCs and perspective on the future potential of PSCs, emphasizing their role in shaping a sustainable energy landscape. Through this review readers will gain a comprehensive insight into the current state-of-the-art in PSC technology and the avenues for future research and development.
- This article is part of the themed collections: RSC Advances Physical Chemistry year in review 2024 and 2024 Reviews in RSC Advances