Issue 6, 2024, Issue in Progress

Simple potentiometry and cyclic voltammetry techniques for sensing Hg2+ ions in water using a promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol nanocomposite thin film electrode

Abstract

A highly promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was successfully synthesized via a reaction involving 2-aminobenzene-1-thiol, Na2WO4, and K2S2O8 as oxidants. The WS2-WO3/P2ABT nanocomposite demonstrated remarkable potential as a sensor for detecting harmful Hg2+ ions in aqueous solutions. The sensing behavior was evaluated over a wide concentration range, from 10−6 to 10−1 M, using a simple potentiometric study on a two-electrode cell. The calibration curve yielded an excellent Nernstian slope of 33.0 mV decade−1. To further validate the sensing capabilities, cyclic voltammetry was employed, and the results showed an increasing trend in the cyclic voltammetry curve as the Hg2+ concentration increased from 10−6 to 10−1 M with an evaluated sensitivity of 2.4 μA M−1. The WS2-WO3/P2ABT nanocomposite sensor exhibited exceptional selectivity for detecting Hg2+ ions, as no significant effects were observed from other interfering ions such as Zn2+, Ni2+, Ca2+, Mg2+, Al3+, and K+ ions in the cyclic voltammetry tests. Furthermore, the sensor was tested on a natural sample that was free of Hg2+ ions, and the cyclic voltammetry curves did not produce any characteristic peaks, confirming the sensor's specificity for Hg2+ detection. The sensor's cost-effectiveness and ease of fabrication present the potential for developing a simple and practical sensor for detecting highly poisonous ions in aqueous solutions.

Graphical abstract: Simple potentiometry and cyclic voltammetry techniques for sensing Hg2+ ions in water using a promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol nanocomposite thin film electrode

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Nov 2023
Accepted
15 Jan 2024
First published
26 Jan 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 3878-3887

Simple potentiometry and cyclic voltammetry techniques for sensing Hg2+ ions in water using a promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol nanocomposite thin film electrode

M. A. Alnuwaiser and M. Rabia, RSC Adv., 2024, 14, 3878 DOI: 10.1039/D3RA07932E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements