Issue 4, 2024

Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor

Abstract

The effect of the grain morphology on the photoluminescence, charge transfer band, and decay properties was investigated by xEu3+, yB3+ (x = 10 mol%, y = 0, 5, 15, 30, 50, 70, and 100 mol%) co-doped BaTa2O6 ceramics fabricated by solid-state reaction. X-ray diffractions of the samples showed that the single-phase structure persisted up to 100 mol% and there was an improvement in crystallinity with increasing B3+ concentration. SEM micrographs of the Eu3+, B3+ co-doped grains showed that the flux effect of boron promotes grain growth and elongated grain shape. The PL emissions of the BaTa2O6:xEu3+, yB3+ co-doped phosphors increased up to 100 mol% B3+ concentration, and there was an increase in the intensities of the CTB energy 5D07F1 transition. The increase in PL may be attributed to the increased grain size leading to a decrease in the surface area (SA)/volume (vol) ratio with increasing B3+ concentration, as well as the improvement in crystallinity. However, the decrease in asymmetry ratio was related to the occupation of centrosymmetric (B) sites and the transformation from a rounded/irregular-like to an elongated/rod-like grain shape which has an increasing effect on the SA/vol ratio. The decreasing trend of the Judd–Ofelt parameters (Ω2, and Ω4) with the increase in boron was related to a high local symmetry of Eu3+ sites, and an increase in the electron density of the surrounding ligands, respectively. The increase in boron led to longer decays in the observed lifetime with bi-exponential characteristics. The CIE diagram and UV lamp photographs of the phosphors showed a color transition from red to orange associated with the increasing magnetic dipole transition. This study may provide an alternative perspective and new strategies to describe the control of grain morphology and luminescence concerning RE-doped phosphors.

Graphical abstract: Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Nov 2023
Accepted
09 Jan 2024
First published
16 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 2687-2696

Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor

M. İlhan, L. F. Güleryüz and M. İ. Katı, RSC Adv., 2024, 14, 2687 DOI: 10.1039/D3RA08197D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements