Evaluation of sustained drug release performance and osteoinduction of magnetron-sputtered tantalum-coated titanium dioxide nanotubes
Abstract
Modifying the drug-release capacity of titanium implants is essential for maintaining their long-term functioning. Titanium dioxide nanotube (TNT) arrays, owing to their drug release capacity, are commonly used in the biomaterial sphere. Their unique half open structure and arrangement in rows increase the drug release capacity. However, their rapid drug release ability not only reduces drug efficiency but also produces excessive local and systemic deposition of antibiotics. In this study, we designed a tantalum-coated TNT system for drug-release optimization. A decreased nanotube size caused by the tantalum nanocoating was observed through SEM and analyzed (TNT: 110 nm, TNT-Ta1: 80 nm, TNT-Ta3: 40 nm, TNT-Ta5: 20 nm, TNT-Ta7: <5 nm). XPS analysis revealed the distribution of the chemical components, especially that of the tantalum element. In vitro experiments showed that the tantalum nanocoating enhanced cell proliferation; in particular, TNT-Ta5 possessed the best cell viability (about 1.18 of TNT groups at 7d). It also showed that the tantalum nanocoating had a positive effect on osteogenesis (especially TNT-Ta5 and TNT-Ta7). Additionally, hydrophilic/hydrophobic drug (vancomycin/raloxifene) release results indicated that the TNT-Ta5 group possessed the most desirable sustained release capacity. Moreover, in this drug release system, the hydrophobic drug showed more sustained release capacity than the hydrophilic drug (vancomycin: sustained release for more than 48 h, raloxifene: sustained release for more than 168 h). More importantly, TNT-Ta5 is proved to be an appropriate drug release system, which possesses cytocompatibility, osteogenic capacity, and sustained drug release capacity.