Issue 13, 2024, Issue in Progress

Machine learning guided tuning charge distribution by composition in MOFs for oxygen evolution reaction

Abstract

Traditional design/optimization of metal–organic frameworks (MOFs) is time-consuming and labor-intensive. In this study, we utilize machine learning (ML) to accelerate the synthesis of MOFs. We have built a library of over 900 MOFs with different metal salts, solvent ratios, reaction durations and temperatures, and utilize zeta potentials as target variables for ML training. A total of four ML models have been used to train the collected dataset and assess their convergence performances, where Random Forest Regression (RFR) and Gradient Boosting Regression (GBR) models show strong correlation and accurate predictions. We then predicted two kinds of MOFs from RFR and GBR models. Remarkably, the experimentally data of the synthesized MOFs closely matched the predicted results, and these MOFs exhibited excellent electrocatalytic performances for oxygen evolution. This study would have general implications in the utilization of machine learning for accelerating the synthesis of MOFs for diverse applications.

Graphical abstract: Machine learning guided tuning charge distribution by composition in MOFs for oxygen evolution reaction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 Dec 2023
Accepted
25 Feb 2024
First published
18 Mar 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 9032-9037

Machine learning guided tuning charge distribution by composition in MOFs for oxygen evolution reaction

L. Yu, W. Zhang, Z. Nie, J. Duan and S. Chen, RSC Adv., 2024, 14, 9032 DOI: 10.1039/D3RA08873A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements