Issue 17, 2024

Detection of SARS-CoV-2 N protein using AgNPs-modified aligned silicon nanowires BioSERS chip

Abstract

The SARS-CoV-2 (COVID-19) pandemic had a strong impact on societies and economies worldwide and tests for high-performance detection of SARS-CoV-2 biomarkers are still needed for potential future outbreaks of the disease. In this paper, we present the different steps for the design of an aptamer-based surface-enhanced Raman scattering (BioSERS) sensing chip capable of detecting the coronavirus nucleocapsid protein (N protein) in spiked phosphate-buffered solutions and real samples of human blood serum. Optimization of the preparation steps in terms of the aptamer concentration used for the functionalization of the silver nanoparticles, time for affixing the aptamer, incubation time with target protein, and insulation of the silver active surface with cysteamine, led to a sensitive BioSERS chip, which was able to detect the N protein in the range from 1 to 75 ng mL−1 in spiked phosphate-buffered solutions with a detection limit of 1 ng mL−1 within 30 min. Furthermore, the BioSERS chip was used to detect the target protein in scarcely spiked human serum. This study demonstrates the possibility of a clinical application that can improve the detection limit and accuracy of the currently commercialized SARS-CoV-2 immunodiagnostic kit. Additionally, the system is modular and can be applied to detect other proteins by only changing the aptamer.

Graphical abstract: Detection of SARS-CoV-2 N protein using AgNPs-modified aligned silicon nanowires BioSERS chip

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2024
Accepted
03 Apr 2024
First published
16 Apr 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 12071-12080

Detection of SARS-CoV-2 N protein using AgNPs-modified aligned silicon nanowires BioSERS chip

S. Kouz, A. Raouafi, A. Ouhibi, N. Lorrain, M. Essafi, M. Mejri, N. Raouafi, A. Moadhen and M. Guendouz, RSC Adv., 2024, 14, 12071 DOI: 10.1039/D4RA00267A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements