Issue 10, 2024

Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper

Abstract

Modern highly integrated microelectronic products often face the challenge of internal heat dissipation, leading to a significant decrease in their operational efficiency. Annealed Pyrolytic Graphite (APG), due to its superior thermal conductivity, has garnered attention from researchers. The interface thermal resistance between APG and supporting materials like copper significantly affects heat transfer during APG's operation. Existing studies rarely delve into the influence of factors such as the shape of APG material interfaces on thermal resistance from a microscopic perspective. In this paper, utilizing transient thermo-reflectance method and non-equilibrium molecular dynamics simulations, the interface thermal resistance of the APG–Cu structure was investigated under different conditions. The impact of parameters such as copper thickness, interface micro-surface morphology, and APG thickness on the calculated interface thermal resistance was examined. Simulation results revealed that copper thickness had a minor effect on the interface thermal resistance. This is because the phonon participation ratio remains unaffected by changes in the thickness of the copper layer. The interfacial thermal resistance beneath microscopically cylindrical copper surfaces was considerably lower than that of rectangular copper surfaces. This is because beneath the cylindrical surface, the enlarged interface contact area facilitates enhanced thermal transport between the interfaces. The computed results of the radial distribution function in the paper also indirectly validate this viewpoint. The magnitude of interfacial thermal resistance for different APG layers was influenced by the coupling effect of intermolecular forces and the layered stacking structure of APG. The interfacial thermal resistance under the condition of three layers of APG reaches its minimum value, which is 2.2 × 10−9 (K m2 W−1). Furthermore, from the phonon perspective, it is found that the interfacial thermal resistance with different numbers of APG layers is closely related to the localization or delocalization state of phonons. As the number of APG layers increased, the interface thermal resistance showed a trend of initial decrease followed by an increase, this is because the average phonon participation ratio increases and then decreases with the number of APG layers. The average phonon participation ratio reaches its maximum value of 0.45778 under the condition of three layers of APG.

Graphical abstract: Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Jan 2024
Accepted
23 Feb 2024
First published
27 Feb 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 7073-7080

Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper

X. Jiang, X. Li, D. Li, L. Su, T. Zhang, B. Chen and Z. Li, RSC Adv., 2024, 14, 7073 DOI: 10.1039/D4RA00281D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements