Issue 19, 2024, Issue in Progress

Effects of external light in the magnetic field-modulated photocatalytic reactions in a microfluidic chip reactor

Abstract

Photocatalytic reactions and their magnetic-field enhancement present significant potential for practical applications in green chemistry. This work presents the mutual enhancement of plasmonic photocatalytic reaction by externally applied magnetic field and plasmonic enhancement in a micro optofluidic chip reactor. The tiny gold (Au) nanoparticles of only a few atoms fixed on the surface of titanium dioxide (TiO2) nanoparticles lead to mutually boosted enhancement photocatalytic reactions under an external magnetic field and plasmonic effects. The dominant factor of adding green light to the photocatalytic reaction leads to the understanding that it is a plasmonic effect. The positive results of adding ethanol alcohol (EA) in the experiments further present that it is a hot electron dominant path photocatalytic reaction that is positively enhanced by both the external magnetic field and plasmonic effects. This work offers great potential for utilizing magnetic field enhancement in plasmonic photocatalytic reactions.

Graphical abstract: Effects of external light in the magnetic field-modulated photocatalytic reactions in a microfluidic chip reactor

Article information

Article type
Paper
Submitted
16 Jan 2024
Accepted
15 Apr 2024
First published
23 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 13053-13061

Effects of external light in the magnetic field-modulated photocatalytic reactions in a microfluidic chip reactor

H. J. Huang, Y. H. Wang, X. Shih, S. Chen, H. Chiang, Y. Chou Chau and J. Chi-Sheng Wu, RSC Adv., 2024, 14, 13053 DOI: 10.1039/D4RA00415A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements