Exploring microgel adsorption: synthesis, classification, and pollutant removal dynamics
Abstract
Microgels have gained significant importance for the removal of pollutants owing to their stimulus-responsive behavior, high stability, and reusable capacity. However, despite these advantages, several hurdles need to be overcome to fully maximize their potential as effective adsorbents for eradicating various contaminants from the environment, such as metallic cations, organic compounds, anions, harmful gases, and dyes. Therefore, a critical review on the adsorption of pollutants by microgels is needed. In this regard, this review presents the latest developments in the adsorptive properties of microgels. The synthetic methods, architectural structures, and stimulus-responsive behavior of microgels are explained in detail. In addition, this review explores various factors that directly influence the adsorption of pollutants by microgels, such as pH, feed composition, content of pollutants, content of comonomers, agitation time, temperature, microgel dose, nature of both adsorbates (pollutants) and adsorbents (microgels), nature of the medium, and ionic strength. Various adsorption isotherms are also explored together with the kinetic aspects of the adsorption process to provide a comprehensive understanding.
- This article is part of the themed collection: 2024 Reviews in RSC Advances