Highly homogeneous and stable single-walled carbon nanotubes dispersion modified by polyvinylpyrrolidone and alkanolamine in water
Abstract
A novel noncovalent surface modification of commercial single-walled carbon nanotubes (SWCNTs) was successfully carried out by using ball grinding technology between SWCNTs and mixed dispersants (polyvinylpyrrolidone (PVP) and alkanolamine), affording a highly homogeneous and stable PA-SWCNTs dispersion in water. The homogeneous dispersibility and long storage stability were systematically investigated by transmittance spectroscopy, absorption spectroscopy, zeta potential analyzer, sedimentation photo and transmittance electron microscopy. Under the optimized conditions, the PA-SWCNTs dispersion modified with 0.7 wt% PVP and 0.25 wt% alkanolamine under the condition of total 6 h ball grinding time using paint shaker can be easily well-dispersed in water and has good storage stability, and no sedimentation is observed more than one month. From an industrial perspective, this method is green and easy to operate in industry.