Issue 16, 2024

Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of Caroxylon volkensii by LC-QTOF-MS/MS analysis and molecular docking

Abstract

Caroxylon volkensii is a wild desert plant of the family Amaranthaceae. This study represents the first report of the metabolomic profiling of C. volkensii by liquid chromatography quadrupole-time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The dereplication study of its secondary metabolites led to the characterization of 66 known compounds. These compounds include catecholamines, tyramine derivatives, phenolic acids, triterpenoids, flavonoids, and others. A new tyramine derivative, alongside other known compounds, was reported for the first time in the Amaranthaceae family. The new derivative and the first-reported compounds were putatively identified through MS/MS fragmentation data. Given the notorious taxonomical challenges within the genus Salsola, to which C. volkensii previously belonged, our study could offer a valuable insight into its chemical fingerprint and phylogenetic relationship to different Salsola species. The antibacterial potential of C. volkensii methanolic extract (CVM) against Pseudomonas aeruginosa was screened. The minimum inhibitory concentration (MIC) of CVM ranged from 32 to 256 μg mL−1. The anti-quorum sensing potential of CVM resulted in a decrease in the percentage of strong and moderate biofilm-forming isolates from 47.83% to 17.39%. It revealed a concentration-dependent inhibitory activity on violacein formation by Chromobacterium violaceum. Moreover, CVM exhibited an in vivo protective potential against the killing capacity of P. aeruginosa isolates. A molecular docking study revealed that the quorum-sensing inhibitory effect of CVM can be attributed to the binding of tyramine conjugates, ethyl-p-digallate, and isorhamnetin to the transcriptional global activator LasR.

Graphical abstract: Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of Caroxylon volkensii by LC-QTOF-MS/MS analysis and molecular docking

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Mar 2024
Accepted
28 Mar 2024
First published
09 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 11388-11399

Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of Caroxylon volkensii by LC-QTOF-MS/MS analysis and molecular docking

M. H. ElNaggar, U. R. Abdelmohsen, F. M. Abdel Bar, A. A. Kamer, G. Bringmann and E. Elekhnawy, RSC Adv., 2024, 14, 11388 DOI: 10.1039/D4RA01646G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements