Prediction of the binding interactions between rosmarinic acid and cysteinyl leukotriene receptor type 1 by molecular docking and immobilized receptor chromatography
Abstract
Drug–protein interaction analysis is still at the center of research efforts to illustrate binding mechanisms and provide valuable information for selecting drug candidates with ideal properties in the early drug discovery stage. We present the prediction of the binding of rosmarinic acid (RA) to cysteinyl leukotriene receptor type1 (CysLTR1) by molecular docking. According to our findings, CysLTR1 is a potential anti-inflammatory target of RA. Under this assumption, we prepared the immobilized CysLTR1 column via a one-step method and characterized the immobilized CysLTR1 by fluorescent and chromatographic analyses. Furthermore, we used the immobilized CysLTR1 column to evaluate the binding interactions between RA and the immobilized receptor. Molecular docking showed that Tyr 249, Phe 174, Thr 280, Pro 177, and Thr 100 are the main sites for RA to interact with CysLTR1. The main forces that drive the findings are hydrogen bonds and hydrophobic interactions. Characterization results show that CysLTR1 is successfully immobilized with high specificity and stability. Almost no non-specific binding is observed on the immobilized CysLTR1 gels. The association constant and the binding sites are calculated to be 7.268 × 105 L mol−1 and 1.237 × 10−8 mol L−1 by injection amount-dependent method. These results, taken together, confirm the potential target of RA on the anti-inflammatory effect. We believe that it can provide valuable reference information on the in-depth exploration of drug–protein interaction mechanisms, and lead compound screening by this method.