Issue 26, 2024

Synthesis, antimicrobial activity and application of polymers of praseodymium complexes based on pyridine nitrogen oxide

Abstract

The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 μg mL−1, 6.25 μg mL−1, 3.125 μg mL−1 and 6.25 μg mL−1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.

Graphical abstract: Synthesis, antimicrobial activity and application of polymers of praseodymium complexes based on pyridine nitrogen oxide

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Apr 2024
Accepted
27 May 2024
First published
10 Jun 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 18519-18527

Synthesis, antimicrobial activity and application of polymers of praseodymium complexes based on pyridine nitrogen oxide

Q. Zhu, W. Hsu, S. Wang, F. Lin, Y. Wu, Y. Fang, J. Chen and L. Song, RSC Adv., 2024, 14, 18519 DOI: 10.1039/D4RA03003F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements