Characterization of Cl-doped two-dimensional (PEA)2PbBr4 perovskite single crystals for fast neutron and gamma ray detection†
Abstract
In this paper, a high-quality Cl-doped two-dimensional halide perovskite (PEA)2Pb(Br0.95Cl0.05)4 crystal was prepared using a seed-induced volatile solvent method. On optimizing the Cl− doping concentration, we found that 5% Cl-doping results in (PEA)2PbBr4 with the highest optical and photon yield. Based on the Cl-doped (PEA)2PbBr4 single crystal, the response characterization of the (PEA)2Pb(Br0.95Cl0.05)4 crystal in the mixed field of neutrons and gamma rays (n/γ) has been verified. Using the time-of-flight method and the linear relationship between integral charge and neutron yield, it was proved that (PEA)2Pb(Br0.95Cl0.05)4 crystal can be used for n/γ screening. The time difference between the fast neutron released by a single nuclear reaction and the γ photon arriving at the detector was 130 ns, and the arrival time of the γ photon is earlier than that of the fast neutron. This work has a broad application prospect in the study of nuclear reaction kinetics, the monitoring of the neutron yield of fusion devices and the total energy released by nuclear reactions.