Efficient synergism of concentric ring structures and carbon dots for enhanced methanol electro-oxidation†
Abstract
Developing affordable and reliable electrocatalysts with high activity and stability is crucial for enhancing the practicality of direct methanol fuel cells (DMFCs). An effective and simple strategy of combining the carbon point of N-CDs (0.4 mg mL−1) with NiO/Ni for the fabrication of NiO/Ni–N-CDsV nanocomposites with a three-dimensional concentric core–shell structure was proposed to successfully prepare the electro-oxidation catalyst of methanol. The low cost of Ni-based materials and the conductive N-CDs that improve methanol catalytic performance make the composites an excellent choice as electrode materials for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of methanol oxidation was studied using cyclic voltammetry and chronoamperometry. The results indicated that the catalytic activity of NiO/Ni–N-CDsV increased by 3.02 times, and the current density was stable during the operation for 83 hours, implying strong electrocatalytic stability. Furthermore, the electrocatalytic performance for ethanol, ethylene glycol, and glycerol electro-oxidation reactions was impressive. This study provides a novel foundation for the development of high-performance, cost-effective, non-noble metal catalysts for DMFC applications, contributing to the formation of commercially competitive electro-oxidation catalysts with enhanced efficiency and stability.