Efficient energy and memory storage capabilities in optimized BiFeO3/MnMoO4/NiFe2O4 triphasic composites for futuristic multistate devices
Abstract
The emergence of multiferroic materials particularly bismuth iron oxide (BiFeO3) with distinctive magnetoelectric, and high energy storage capabilities, present pivotal aspects for next-generation memory storage devices. However, intrinsically weak magnetoelectric coupling limits their widespread applications, that can be leap over by the integration of BiFeO3 with enriched ferroelectric, and ferro/ferrimagnetic materials. Here, a series (1 − x)[0.7BiFeO3 + 0.3MnMoO4] + xNiFe2O4 (x = 0.00, 0.03, 0.06, and 0.09) is synthesized via citrate-gel based self-ignition, and solid-state reaction routes. Phase purity and crystallinity of tri-phase composites with surfaces revealing random and arbitrarily shaped grains are assured by X-ray diffraction, and field emission scanning electron microscopy, respectively. Dielectric studies illustrated non-linear trend for broad range of frequencies as predicted by Maxwell–Wagner theory along with single semicircle arcs in Nyquist plots that exposes grain boundaries effect. An enriched 68.42% of ferroelectric efficiency is featured for x = 0.06 substitutional contents, while magnetic computations demonstrated improved saturation magnetization (Ms), remanence magnetization (Mr), and coercive applied magnetic field (Hc) values as 5.87 emu g−1, 0.96 emu g−1, and 215.19 Oe, respectively for x = 0.09 phase-fraction. The intriguing linear trends of magnetoelectric coupling for all the compositions are corroborating them propitious contenders for futuristic multistate devices.