Issue 43, 2024

Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles

Abstract

Cancer is a primary cause of death worldwide, and considerably impacts mortality rates in low- and middle-income countries. The rise in chemotherapeutic patients and toxicity of cytotoxic agents highlight the need for reliable analytical methods to detect these compounds. The current study presents a simple and straightforward method for producing polyvinylpyrrolidone functionalized strontium oxide nanoparticles (PVP-SrO NPs). The synthesized PVP-SrO NPs were applied as a sensitive sensor to detect vinblastin sulfate (VNB) (an anticancer drug). The synthesized PVP-SrO NPs were characterized using different characterization techniques. Fourier transform infrared spectroscopy (FTIR) confirms the functionality of synthesized PVP-SrO NPs. The sharp intense peaks of X-ray diffraction spectroscopy (XRD) confirm the crystalline nature of NPs, scanning electron microscopy (SEM) confirm the nanobeads like morphology, and energy dispersive spectroscopy (EDS) reveals the presence of Sr and O at 68.3% and 23% respectively. The electrochemical impedance spectroscopy and cyclic voltammetry studies revealed that the PVP-SrO/GCE is more conductive than bare GCE with an Rct value of 960.4 Ω compared to 2440 Ω. The sensor exhibited a wide linear dynamic range for VNB (0.05 to 60 μM) with low LOD 0.005 μM, and LOD 0.017 μM. The proposed sensor was successfully used for monitoring VNB in human blood serum samples with a satisfactory percent recovery from 96% to 103%. The fabricated sensor exhibits better performance than the reported sensors in terms of processing, simplicity, cost-effectiveness, energy consumption, and enhanced efficacy in a very short time.

Graphical abstract: Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Jul 2024
Accepted
19 Sep 2024
First published
02 Oct 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 31387-31397

Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles

S. Lanjar, A. R. Solangi, N. Batool, N. H. Khand, M. Kamboh, A. Malah, J. A. Buledi and M. M. Khan, RSC Adv., 2024, 14, 31387 DOI: 10.1039/D4RA05493H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements