Issue 46, 2024

A flexible, stable, semi-dry electrode with low impedance for electroencephalography recording

Abstract

Brain–computer interfaces (BCIs) provide promising prospects for the field of healthcare and rehabilitation, presenting significant advantages for humanity. The development of electrodes that exhibit satisfactory performance characteristics, including high electrical conductivity, optimal comfort, and exceptional stability, is crucial for the effective implementation of electroencephalography (EEG) recording in BCI systems. The present study introduces a novel EEG electrode design that utilizes a composite material consisting of reduced graphene oxide (RGO) and polyurethane (PU) sponge. This electrode is characterized by its low impedance, stability, and flexibility. This work offers a high level of comfort while in touch with the skin and is designed to be user-friendly. Due to its notable moisturizing capacity, adaptable structure, and the presence of conductive RGO networks, the RGOPU semi-dry electrode exhibits a skin-contact impedance of less than 5.6 kΩ. This value is equivalent to that of a wet electrode and lower than that of a commercially available semi-dry electrode. The stability tests have demonstrated the outstanding electrical and mechanical performance of the material, hence confirming its suitability for long-term EEG recording. Additionally, the RGOPU semi-dry electrode demonstrates stable recording of EEG data and accurate detection of action potentials. Furthermore, the correlation coefficient between the RGOPU semi-dry electrode and wet electrodes exceeds 0.9. Additionally, it acquires electroencephalogram signals characterized by high signal-to-noise ratios (SNRs) in the context of alpha-wave and steady-state visual evoked potential (SSVEP) tests. The accuracy of the BCI is similar to that of wet electrodes, indicating a potential capability for sensing EEG in BCI applications.

Graphical abstract: A flexible, stable, semi-dry electrode with low impedance for electroencephalography recording

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
11 Oct 2024
First published
29 Oct 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 34415-34427

A flexible, stable, semi-dry electrode with low impedance for electroencephalography recording

Y. Zhu, C. Bayin, H. Li, X. Shu, J. Deng, H. Yuan, H. Shen, Z. Liang and Y. Li, RSC Adv., 2024, 14, 34415 DOI: 10.1039/D4RA05560H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements