Issue 40, 2024, Issue in Progress

Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design

Abstract

Traditional photosensitizers (PS) in photodynamic therapy (PDT) have restricted tissue penetrability of light and a lack of selectivity for tumor cells, which diminishes the efficiency of PDT. Our aim is to effectively screen porphyrin-based PS medication through computational simulations of large-scale design and screening of PDT candidates via a precise description of the state of the light-stimulated PS molecule. Perylene-diimide (PDI) shows an absorption band in the near-infrared region (NIR) and a great photostability. Meanwhile, the insertion of metal can enhance tumor targeting. Therefore, on the basis of the original porphyrin PS segments, a series of metalloporphyrin combined with PDI and additional allosteric Zn-porphyrin-PDI systems were designed and investigated. Geometrical structures, frontier molecular orbitals, ultraviolet-visible (UV-vis) absorption spectra, adiabatic electron affinities (AEA), especially the triplet excited states and spin–orbit coupling matrix elements (SOCME) of these expanded D–A porphyrin were studied in detail using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. PS candidates, conforming type I or II mechanism for PDT, have been researched carefully by molecular docking which targeted Factor-related apoptosis (Fas)/Fas ligand (Fasl) mediated signaling pathway. It was found that porphyrin-PDI, Fe2-porphyrin-PDI, Zn-porphyrin-PDI, Mg-porphyrin-PDI, Zn-porphyrin combined with PDI through single bond (compound 1), and two acetylenic bonds (compound 2) in this work would be proposed as potential PS candidates for PDT process. This study was expected to provide PS candidates for the development of novel medicines in PDT.

Graphical abstract: Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2024
Accepted
10 Sep 2024
First published
16 Sep 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 29368-29383

Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design

W. Yin, P. Li, H. Huang, L. Feng, S. Liu, X. Liu and F. Bai, RSC Adv., 2024, 14, 29368 DOI: 10.1039/D4RA05585C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements