Issue 47, 2024, Issue in Progress

Improved thermoelectric performance of PEDOT:PSS/Bi2Te3/reduced graphene oxide ternary composite films for energy harvesting applications

Abstract

We report a significant enhancement in the thermoelectric power of PEDOT by fabricating a novel ternary composite film by incorporating Bi2Te3 and rGO. A series of five samples of PEDOT:PSS/Bi2Te3/rGO ternary composite films were synthesized using a spin coating method and having different weight% (0.0, 0.1, 0.2, 0.3 wt%) of rGO in PEDOT:PSS/0.4 wt% Bi2Te3 mixture along with pure PEDOT:PSS sample. The Seebeck coefficient, electrical conductivity, and power factor increased in composite films compared to pure PEDOT:PSS films. Incorporating rGO enhanced charge carrier mobility because of its highly conductive network, whereas Bi2Te3 provided higher Seebeck coefficients owing to its inherent thermoelectric properties. PEDOT:PSS offered mechanical flexibility and a conductive matrix, facilitating effective phonon scattering and inherently lower thermal conductivity. The sample (PEDOT:PSS/0.4 wt% Bi2Te3/0.1 rGO wt%) demonstrated the highest electrical conductivity of 1522.4 S cm−1, a Seebeck coefficient of (+) 24.7 μV K−1, and a power factor of 93.16 μW m−1 K−2 at room temperature. These values represent a twelve-fold increase compared to pristine PEDOT films. A flexible, printable thermoelectric generator (TEG) was also demonstrated on polyimide substrate using inks prepared from p-type PEDOT:PSS/Bi2Te3/rGO and n-type PVDF/Ni NWs. The paper TEG achieved a maximum power output of 242.1 nW, with an output voltage of 9.84 mV and an output current of 49.21 μA at a temperature difference (ΔT) of 35 K. XRD, Raman spectroscopy SEM, and XPS techniques were used to understand the underlying mechanism. This novel PEDOT:PSS/Bi2Te3/rGO ternary composite film significantly outperforms previously reported organic thermoelectric materials. The results indicate that the combined effect of PEDOT:PSS, Bi2Te3, and rGO greatly enhances thermoelectric performance, offering a promising and efficient route for the application of PEDOT in advanced thermoelectric conversion processes.

Graphical abstract: Improved thermoelectric performance of PEDOT:PSS/Bi2Te3/reduced graphene oxide ternary composite films for energy harvesting applications

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 Aug 2024
Accepted
24 Oct 2024
First published
01 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 34883-34892

Improved thermoelectric performance of PEDOT:PSS/Bi2Te3/reduced graphene oxide ternary composite films for energy harvesting applications

V. Rathi, K. Singh, K. P. S. Parmar, R. K. Brajpuriya and A. Kumar, RSC Adv., 2024, 14, 34883 DOI: 10.1039/D4RA06184E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements