Synthesis of new-type, cost-effective and insensitive energetic materials via nitration of solid bituminous hydrocarbons†
Abstract
A global trend for the development of energetic materials using various sources is promoted by researchers annually. Solid bituminous hydrocarbons can play a key role in carbon science as abundant, low-cost, and mineral carbonaceous substrates. This study focuses on the design and synthesis of a series of new energetic materials from natural asphalt (NA), petroleum pitch (PP) and petroleum bitumen (PB) as industrial and available solid bituminous hydrocarbons. Energetic materials NA-NO2, PP-NO2 and PB-NO2 were synthesized through the nitrification reaction. The heat of combustion, thermal behaviors and FTIR, elemental, BET, UV-vis, SEM, EDX-map, AFM, GC-MS and TG-DSC analyses were applied to identify and confirm that all were prepared successfully. Further, the physicochemical and energy properties of NA-NO2, PP-NO2 and PB-NO2 were calculated using EMDB V 1.0 software. Thermal analysis showed thermal stability and insensitivity of NA-NO2, PP-NO2 and PB-NO2 toward mechanical stimuli. The combustion heats of NA-NO2, PP-NO2 and PB-NO2 were measured using a calorimeter bomb via the ASTM D240 method and evolved high amounts of energy of 23 500, 23 450 and 23 360 kJ kg−1, respectively. The density of NA-NO2 was measured using the ASTM-D8176 test and confirmed to be 0.5 g cm−3, which can be considered the lightest energetic material. Based on the conducted studies and analyses, new energetic materials synthesized based on solid bituminous hydrocarbons are classified as first-generation energetic materials.