Preparation and properties of a novel alginate/carrageenan crosslinked coordination polymer and evaluation of the antibacterial, antioxidant and anticancer potential of its Co(ii), and Cr(iii) polymeric complexes
Abstract
Natural polysaccharides play a crucial role across diverse fields such as medicine, food, and cosmetics, for their various physiochemical and biological properties. In this study, we developed a new crosslinked biopolymer using sodium alginate (AG) and carrageenan (CAR) polysaccharides. Various metal complexes involving different metal salts such as CoCl2·6H2O and CrCl3·6H2O were synthesized using the crosslinked biopolymer formed above. The two polymeric complexes were characterized using Fourier-transform infrared spectroscopy (FT-IR), elemental analysis, ultraviolet-visible spectroscopy (UV-Vis), magnetic susceptibility, molar conductivity techniques, and thermogravimetric analysis. The Co(II) polymeric complex exhibits a tetrahedral X-ray crystal structure and belongs to the monoclinic crystal system. Cr(III) complex is octahedral and crystal data are in compliance with the cubic crystal system. The antimicrobial study showed a significant activity improvement for all the developed complexes against both Gram-positive as well as Gram-negative bacterial pathogens – Staphylococcus aureus, Microscus luteum, Escherichia coli and Salmonella typhimurium. Similarly, the different polymeric complexes showed an efficient activity against Candida albicans as anti-fungal effect. Moreover, higher antioxidant values of the two complexes were obtained with DPPH scavenging activity ranging between 73% and 94%. In addition, both the polymeric complexes were subjected to biocompatibility cell viability assays along with in vitro anticancer evaluation. The alginate/carrageenan crosslinked coordination complexes revealed excellent cytocompatibility with normal human breast epithelial cells (MCF10A) and a high anticancer potential with human breast cancer cells (MCF-7) which increase significantly in a dose-dependent manner.