A salt-concentrated electrolyte for aqueous ammonium-ion hybrid batteries†
Abstract
The development of aqueous ammonium-ion batteries (AAIBs) is currently attracting great attention because of the interesting electrochemical features induced by the charge carrier NH4+. One possible way to improve the performance of AAIBs is increasing the salt concentration in the electrolyte. Yet, few studies focus on the complex electrode–electrolyte interface behaviors in highly concentrated electrolytes, which affect the electrochemical performance of AAIBs significantly. Herein, we aim to understand the impact of CH3COONH4 electrolyte concentration on the NH4+ storage performance of a bimetallic hydroxide material. Experimental and theoretical simulation results indicate that the acetate anion will participate in the construction of the solvated NH4+ in a highly concentrated electrolyte, facilitating the adsorption of the solvated NH4+ cluster on the electrode surface. Besides, a new partial de-solvation model is also proposed, demonstrating an energy favorable de-solvation process. Finally, an ammonium-ion hybrid battery is designed, which provides a high average discharge voltage of 1.7 V and good energy density of 368 W h kg(cathode)−1, outperforming most of the state-of-the-art aqueous batteries. This work provides new understanding about the electrode's interfacial chemistry in different concentrated CH3COONH4 electrolytes, establishes a correlation between the electrolyte concentration and the electrode's performances, and demonstrates the superiority of the hybrid ammonium-ion battery design.