Issue 4, 2024

Chemometric sensing of stereoisomeric compound mixtures with a redox-responsive optical probe

Abstract

The analysis of mixtures of chiral compounds is a common task in academic and industrial laboratories typically achieved by laborious and time-consuming physical separation of the individual stereoisomers to allow interference-free quantification, for example using chiral chromatography coupled with UV detection. Current practice thus impedes high-throughput and slows down progress in countless chiral compound development projects. Here we describe a chemometric solution to this problem using a redox-responsive naphthoquinone that enables chromatography-free click chemistry sensing of challenging mixtures. The achiral probe covalently binds amino alcohols within a few minutes at room temperature and generates characteristic UVA and CDA spectra that are intentionally altered via sodium borohydride reduction to provide a second, strikingly different chiroptical data set (UVB and CDB). Chemometric partial least squares processing of the chiroptical outputs then enables spectral deconvolution and accurate determination of individual analyte concentrations. The success of this approach is demonstrated with 35 samples covering considerably varied total analyte amounts and stereoisomeric ratios. All chemicals and machine learning algorithms are readily available and can be immediately adapted by any laboratory.

Graphical abstract: Chemometric sensing of stereoisomeric compound mixtures with a redox-responsive optical probe

Supplementary files

Article information

Article type
Edge Article
Submitted
25 Oct 2023
Accepted
20 Dec 2023
First published
21 Dec 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 1498-1504

Chemometric sensing of stereoisomeric compound mixtures with a redox-responsive optical probe

J. S. S. K. Formen, D. S. Hassan and C. Wolf, Chem. Sci., 2024, 15, 1498 DOI: 10.1039/D3SC05706B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements